понедельник, 9 мая 2011 г.

13.1. USB Device Basics

13.1. USB Device Basics

A USB device is a very complex thing, as described in the official USB documentation (available at http://www.usb.org). Fortunately, the Linux kernel provides a subsystem called the USB core to handle most of the complexity. This chapter describes the interaction between a driver and the USB core. Figure 13-1 shows how USB devices consist of configurations, interfaces, and endpoints and how USB drivers bind to USB interfaces, not the entire USB device.

 Figure 13-2. USB device overview


13.1.1. Endpoints

The most basic form of USB communication is through something called an endpoint. A USB endpoint can carry data in only one direction, either from the host computer to the device (called an OUT endpoint) or from the device to the host computer (called an IN endpoint). Endpoints can be thought of as unidirectional pipes.

A USB endpoint can be one of four different types that describe how the data is transmitted:

CONTROL
Control endpoints are used to allow access to different parts of the USB device. They are commonly used for configuring the device, retrieving information about the device, sending commands to the device, or retrieving status reports about the device. These endpoints are usually small in size. Every USB device has a control endpoint called "endpoint 0" that is used by the USB core to configure the device at insertion time. These transfers are guaranteed by the USB protocol to always have enough reserved bandwidth to make it through to the device.

INTERRUPT
Interrupt endpoints transfer small amounts of data at a fixed rate every time the USB host asks the device for data. These endpoints are the primary transport method for USB keyboards and mice. They are also commonly used to send data to USB devices to control the device, but are not generally used to transfer large amounts of data. These transfers are guaranteed by the USB protocol to always have enough reserved bandwidth to make it through.

BULK
Bulk endpoints transfer large amounts of data. These endpoints are usually much larger (they can hold more characters at once) than interrupt endpoints. They are common for devices that need to transfer any data that must get through with no data loss. These transfers are not guaranteed by the USB protocol to always make it through in a specific amount of time. If there is not enough room on the bus to send the whole BULK packet, it is split up across multiple transfers to or from the device. These endpoints are common on printers, storage, and network devices.

ISOCHRONOUS
Isochronous endpoints also transfer large amounts of data, but the data is not always guaranteed to make it through. These endpoints are used in devices that can handle loss of data, and rely more on keeping a constant stream of data flowing. Real-time data collections, such as audio and video devices, almost always use these endpoints.

Control and bulk endpoints are used for asynchronous data transfers, whenever the driver decides to use them. Interrupt and isochronous endpoints are periodic. This means that these endpoints are set up to transfer data at fixed times continuously, which causes their bandwidth to be reserved by the USB core.

USB endpoints are described in the kernel with the structure struct usb_host_endpoint. This structure contains the real endpoint information in another structure called struct usb_endpoint_descriptor. The latter structure contains all of the USB-specific data in the exact format that the device itself specified. The fields of this structure that drivers care about are:

bEndpointAddress

This is the USB address of this specific endpoint. Also included in this 8-bit value is the direction of the endpoint. The bitmasks USB_DIR_OUT and USB_DIR_IN can be placed against this field to determine if the data for this endpoint is directed to the device or to the host.

bmAttributes
This is the type of endpoint. The bitmask USB_ENDPOINT_XFERTYPE_MASK should be placed against this value in order to determine if the endpoint is of type USB_ENDPOINT_XFER_ISOC, USB_ENDPOINT_XFER_BULK, or of type USB_ENDPOINT_XFER_INT. These macros define a isochronous, bulk, and interrupt endpoint, respectively.

wMaxPacketSize
This is the maximum size in bytes that this endpoint can handle at once. Note that it is possible for a driver to send amounts of data to an endpoint that is bigger than this value, but the data will be divided up into wMaxPacketSize chunks when actually transmitted to the device. For high-speed devices, this field can be used to support a high-bandwidth mode for the endpoint by using a few extra bits in the upper part of the value. See the USB specification for more details about how this is done.

bInterval
If this endpoint is of type interrupt, this value is the interval setting for the endpoint—that is, the time between interrupt requests for the endpoint. The value is represented in milliseconds.

The fields of this structure do not have a "traditional" Linux kernel naming scheme. This is because these fields directly correspond to the field names in the USB specification. The USB kernel programmers felt that it was more important to use the specified names, so as to reduce confusion when reading the specification, than it was to have variable names that look familiar to Linux programmers.

13.1.2. Interfaces

USB endpoints are bundled up into interfaces. USB interfaces handle only one type of a USB logical connection, such as a mouse, a keyboard, or a audio stream. Some USB devices have multiple interfaces, such as a USB speaker that might consist of two interfaces: a USB keyboard for the buttons and a USB audio stream. Because a USB interface represents basic functionality, each USB driver controls an interface; so, for the speaker example, Linux needs two different drivers for one hardware device.

USB interfaces may have alternate settings, which are different choices for parameters of the interface. The initial state of a interface is in the first setting, numbered 0. Alternate settings can be used to control individual endpoints in different ways, such as to reserve different amounts of USB bandwidth for the device. Each device with an isochronous endpoint uses alternate settings for the same interface.

USB interfaces are described in the kernel with the struct usb_interface structure. This structure is what the USB core passes to USB drivers and is what the USB driver then is in charge of controlling. The important fields in this structure are:

struct usb_host_interface *altsetting
An array of interface structures containing all of the alternate settings that may be selected for this interface. Each struct usb_host_interface consists of a set of endpoint configurations as defined by the struct usb_host_endpoint structure described above. Note that these interface structures are in no particular order.

unsigned num_altsetting
The number of alternate settings pointed to by the altsetting pointer.

struct usb_host_interface *cur_altsetting
A pointer into the array altsetting, denoting the currently active setting for this interface.
int minor

If the USB driver bound to this interface uses the USB major number, this variable contains the minor number assigned by the USB core to the interface. This is valid only after a successful call to usb_register_dev (described later in this chapter).

There are other fields in the struct usb_interface structure, but USB drivers do not need to be aware of them.

13.1.3. Configurations

USB interfaces are t hemselves bundled up into configurations. A USB device can have multiple configurations and might switch between them in order to change the state of the device. For example, some devices that allow firmware to be downloaded to them contain multiple configurations to accomplish this. A single configuration can be enabled only at one point in time. Linux does not handle multiple configuration USB devices very well, but, thankfully, they are rare.

Linux describes USB configurations with the structure struct usb_host_config and entire USB devices with the structure struct usb_device. USB device drivers do not generally ever need to read or write to any values in these structures, so they are not defined in detail here. The curious reader can find descriptions of them in the file include/linux/usb.h in the kernel source tree.

A USB device driver commonly has to convert data from a given struct usb_interface structure into a struct usb_device structure that the USB core needs for a wide range of function calls. To do this, the function interface_to_usbdev is provided. Hopefully, in the future, all USB calls that currently need a struct usb_device will be converted to take a struct usb_interface parameter and will not require the drivers to do the conversion.

So to summarize, USB devices are quite complex and are made up of lots of different logical units. The relationships among these units can be simply described as follows:

Devices usually have one or more configurations.

Configurations often have one or more interfaces.

Interfaces usually have one or more settings.

Interfaces have zero or more endpoints.

Комментариев нет:

Отправить комментарий

Примечание. Отправлять комментарии могут только участники этого блога.